Welcome Suzhou Nutpool Materials Technology Co., Ltd

Current position:Home > News > News

News

Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

Sources:nanopure | Release date: 2020-06-13 | Browsing volume:
Key words:Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

A cool way to use isotopes

Thermal management of electronics requires materials that can efficiently remove heat. Several promising materials have been found recently, but diamond remains the bulk material with the highest thermal conductivity. Chen et al. found that isotopically pure cubic boron nitride has an ultrahigh thermal conductivity, 75% that of diamond. Using only boron-11 or boron-10 allows the crystal vibrations that carry heat to move more efficiently through the material. This property could be exploited for better regulating the temperature of high-power devices.

Abstract

Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched 10B or 11B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.

Share to:
Relevant articles
Related products
  • Hexagonal Boron Nitride (h-BN)
    Hexagonal Boron Nitride (h-BN)
  • H-BN nano-sheets (NS-BN)
    H-BN nano-sheets (NS-BN)
  • H-BN Spheres (S-BN)
    H-BN Spheres (S-BN)
  • H-BN Aggregates (Agg-BN)
    H-BN Aggregates (Agg-BN)
Suzhou Nutpool Materials Technology Co., Ltd., established in 2016, is located in the national high-tech development zone Changshu Economic and Technological Development Zone, and has got funded by Jiangsu Province, Suzhou and Changshu government to scale-up the production of ultra-fine specialty ceramic powders with high-purity.
Top